GhaSShee


(1-) Category Theory


# pos Unlike a set, A category has objects and morphisms.
Category pos has unique forall x y, x $ \to $ y is unique.
e.g.
pos = { {1, 2, 3}, { $ 1 _ 1 $ , $ 1 _ 2 $ , $ 1 _ 3 $ , 1 $ \to $ 2, 2 $ \to $ 3, 1 $ \to $ 3, }}.
A category C is a family of End, Hom sets. - Obj - end - hom - dom - cod - id - com - assoc - unitr - unitl C := {Obj, Hom, Dom, Cod, Id, Com, Assoc, UnitL, UnitR} - Obj : {1, 2, 3} - Hom : Obj Obj -> C - Hom : x y |-> Hom(x,y) - Dom : Hom(x,y) -> Obj - Dom : f |-> x - Cod : Hom(x,y) -> Obj - Cod : f |-> y - Id : Obj -> Σ Hom(x,x) - Id : x |-> 1 _ x - Com : Hom(y,z) Hom(x,y) -> Hom(x,z) - Com : g f |-> g.f - Assoc : Com Hom(y,z) (Com Hom(x,y) Hom(w,x)) -> Com (Com Hom(y,z) Hom(x,y)) Hom(w,x) - UnitR : Hom(x,y) ({Id x}) -> Hom(x,y) - UnitL : ({Id y}) Hom(x,y) -> Hom(x,y) ... - Mor = Σ Hom + Σ End - Mor : { $ 1 _ 1 $ , $ 1 _ 2 $ , $ 1 _ 3 $ , 1 $ \to $ 2, 2 $ \to $ 3, 1 $ \to $ 3, } - id : Obj $ \to $ Mor - id : $ x \ \mapsto \ 1 _ x $ - com : Hom $ \times $ Hom $ \to $ Hom - com : $ ( x, \ y ) \ \mapsto \ y \circ x $ - assoc : com Hom (com Hom) $ \to $ com (com Mor Mor) - unitr : Hom $ \times $ $ { 1 _ x } $ $ \to $ Hom - unitl : $ { 1 _ x } $ $ \times $ Hom $ \to $ Hom We can omit Objects since Obj is isomorphic to { $ 1 _ 1 $ , $ 1 _ 2 $ , $ 1 _ 3 $ }.
In category theory, what we have to think is morphisms . Note that - morphism ' $ \le $ ' compose a category, - morphism ' $ \lt $ ' does not compose a category, but a graph. ## The formal Definition Category is composed of 6 definitions. ~~~ - Objects := { X, Y, Z, W } - Morphisms := { f:X->Y, g:Y->Z, ... } - Composition := { g.f:X->Z, h.g:Y->Z, ... } - Identity := { id_x:X->X, ... } - Associativity Laws := { h.(g.f) = (h.g).f } - Unit Laws := { f.id_x = f, id_y.g = g , ... } ~~~ # Mike Shulman's Categoriacl Logic ## Unary Type Theory $$\frac{A}{B}$$ # Categories and Sheaves - # Mac Lane ## Glossaries * copower $X \bullet b$ $\iff$ constant coproduct $\bigsqcup_{x \in X} b$ * connected category $\mathscr C$ $\iff$ $\forall c, d \in \mathscr C ,$ there is a sequence of arrows s.t. $$ c \to \bullet \leftarrow \bullet \rightarrow \bullet \leftarrow ... \leftarrow \bullet \rightarrow \bullet \leftarrow d $$ * wedge * bifunctor * dinatural transformation * final functor $F : \mathscr I \to \mathscr J$ $\iff$ $\forall j \in \mathscr J$, $j \downarrow F$ is connected. * $\mathbb Z \to \mathbb R$ is final * $\triangle \to Top$ is final * $\triangle \to \hat \triangle$ is final * initial functor $F : \mathscr I \to \mathscr J$ $\iff$ $F^{op} : \mathscr I^{op} \to \mathscr J^{op}$ is final. * i.e. $\iff$ $\forall j \in \mathscr J$, $F \downarrow j$ is connected. * $\mathbb Z \to \mathbb R$ is initial * $\triangle \to Top$ is initial * $\triangle \to \hat \triangle$ is initial * comma $d \downarrow F$ $\iff$ slice category $d / F(\mathscr C)$ * comma $F \downarrow d$ $\iff$ slice category $F(\mathscr C) / d$ * end of a functor $S : \mathscr C \times \mathscr C^{op} \to \mathscr D$ * $\iff$ a universal binatural transformation $\xi_c : e (=: \int_c S(c,c)) \to S(c,c)$ * $Nat(U,V) \equiv \int_c Hom(U c, V c)$ * coend := tensor * $\iff$ a universal binatural transformation $S(c,c) \to d ( =: \int^c S(c,c))$ * This is tensor product * indeed $M \otimes_R N$ $\equiv$ $\int^R M \otimes N$ * for a monoidal category with tensor multiplication $B$, and for $S : P \to B$ , $T : P^{op} \to B$, $$ T \square_P S \equiv \int^P (T p)\square(S p) $$ ## Kan Extension * dense functor $K:M \to C$ $\iff$ $Colim((K \downarrow c) \to M \to C) = c$ * $\mathscr {\hat Y}$ is dense * codense functor $K:M \to C$ $\iff$ $Lim((c \downarrow K) \to M \to C) = c$ * $\mathscr {\check Y}$ is codense * $Lan_{\mathscr Y} F \dashv Lan_F \mathscr Y$ * e.g. $realization \dashv nerve$ (where $F: \triangle \to Top$ ) * This adjunction can be constructed since $\mathscr {\hat Y}$ is dense.