GhaSShee


Enrichment


This enrichment formalization is not so much meaningful according to nlab. Rather study Homotopy Type Theory, or pure type theory. # (-2)-category (nothing) A (-2)-category is an element of (-2)Cat.
But there is no element in (-2)Cat.
Only "there is no element in (-2)Cat." might define a unique element. # (-1)-category (small) a (-1)-category is an element of (-1)Cat.
Only 2 (-1)-category exists. - $ \top $ ( $ := $ `(-2)Cat` ) - $ \bot $ # 0-category (small) so, a 0-category is a set. e.g. - `Bool` ( := `(-1)Cat = ` { $ \top $ , $ \bot $ } ) - $ \emptyset $ - { $ * $ } : a set with unique element # 1-category (small) a 1-category is a category. ~~~ - 0-morphism - 1-morphism - identity - composition - associativity - unit ~~~ e.g. - `0 Cat := Sets` - $ Mon $ - $ Vect _ {\mathbb{K}} $ a category is small if its objects are sets. # 2-category / bicategory (large) A 2-category or bicategory is a category which has 2-morphisms equipped with a kind of tensor categories (or monoidal categories). ~~~ - 0-morphism - 1-morphism - 2-morphism - identity - composition - associativity - unit ~~~ ## tensor category / monoidal category A tensor category is denoted as ( $ C $ , $ \otimes $ , $ 1 $ , $ \alpha $ , $ \lambda $ , $ \rho $ ) where ; - $ C $ : category - $ \otimes $ : $ C \times C \to C $ : tensor product functor - $ 1 $ $ \in $ Ob( $ C $ ) : identity object - $ \alpha $ : $ ( - \otimes - ) \otimes - \Rightarrow - \otimes ( - \otimes - ) $ : associator ( isomorphism ) - $ \lambda $ : $ 1 \otimes - \Rightarrow - $ : left unitor ( isomorphism ) - $ \rho $ : $ - \otimes 1 \Rightarrow - $ : right unitor ( isomorphism ) s.t. - pentagon diagram (associative law) - triangle diagram (unit law) are satisfied. ## e.g. - `1 Cat := Cat` : `Cat` itself is a bicategory so it is large # double category (large) a double category is a category which is a litte modified 2-category. # 3-category / tricategory (large) # 4-catefory / tetracategory (large) # n-category ~~~ - 0-morphism := object - 1-morohism := morphism : object -> object - 2-morphism := nat : morphism -> morphism - 3-morphism := so on ... ~~~ # groupoid G : many objects category which has 2 Functors ~~~ comp : G(x,y) x G(y,z) -> G(x,z) inv : G(x,y) -> G(y,x) ~~~ # monoid : one object category which has 2 Functors # small & large ~~~ 3 classification of objects - set - type - category a category is small if object is a set a category is large otherwise (i.e. type, category) ~~~