GhaSShee


Tensor


# The Original Meanings of Words * homo- : same * iso- : equal
# Tensor ## Denotations - $R$ : CRing - $M,N$ : Mod(R)
## Definition : $( T , \otimes , M \times N )$ is Tensor
$(T,\otimes ,M\times N)\quad ;\quad\otimes : M\times N\rightarrow T\quad$ is Tensor. ========================================def $\forall\ (X,\phi)\quad;\quad\phi : M\times N\rightarrow X$ : Bilinear map . $\exists ! \ f : T \rightarrow X .$ $\hspace{4cm}$ $f\circ\otimes =\phi$

## Definition : Bilinear map $\phi$ $\phi : M \times N \rightarrow T$ is bilinear map $\iff$ $\forall m \in M. \forall n \in M$ , $\phi$ is homomorphism on Additive Module $\iff$ $$ \phi(m,n + n') = \phi(m,n) + \phi(m,n') $$ $$ \phi(m + m',n) = \phi(m,n) + \phi(m',n) $$

# Ring Homomorphism Ring Homomorphism $f$
satisfies; $$ f(n + m) = f(n) + f(m) $$ $$ f(n \bullet m) = f(n) \bullet f(m) \quad $$ $$ f(1) = 1 $$ # e.g. CRing(1-parametor Mod(R)) Tensor CRing $R$ itself is one parametor $ Mod(R) $. - $ R = \{0,1,2\} $ : CRing - $ S = \{0,1,2\} $ : CRing $$ \begin{array}{c|ccc} + & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 0 \\ 2 & 2 & 0 & 1 \end{array} \quad \begin{array}{c|ccc} * & 0 & 1 & 2 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 \\ 2 & 0 & 2 & 1 \end{array} $$
1. $ \quad (0 \otimes 0) + (0 \otimes 0) = (0 \otimes 0) $ 2. $ \quad (0 \otimes 1) + (1 \otimes 0) = (2 \otimes 1) + (1 \otimes 1) + (1 \otimes 0) = (0 \otimes 1) $ 3. $ \quad (0 \otimes 1) + (1 \otimes 0) = (0 \otimes 1) + (1 \otimes 1) + (1 \otimes 2) = (1 \otimes 0) $ 4. $ \quad (2 \otimes 0) + (2 \otimes 0) = (1 \otimes 0) $ 5. $ \quad (2 \otimes 0) + (2 \otimes 0) = (2 \otimes 0) $
2,3,4,5 $ \rightarrow (0 \otimes 1) = (1 \otimes 0) = (0 \otimes 2) = (2 \otimes 0) $
$ (0 \otimes 0) = (1 \otimes 0) + (2 \otimes 0) = (2 \otimes 0) + (2 \otimes 0) = (1 \otimes 0) $
So we can define a Quotient Tensor like ; $$ \bar{0} \quad := \quad (0 \otimes 0) \simeq (0 \otimes 1) \simeq (0 \otimes 2) \simeq (1 \otimes 0) \simeq (2 \otimes 0) $$ with simirarity , 1. $ \quad (2 \otimes 1) + (2 \otimes 1) = (2 \otimes 2) $ 2. $ \quad (2 \otimes 1) + (2 \otimes 1) = (1 \otimes 1) $ 3. $ \quad (1 \otimes 1) + (1 \otimes 1) = (1 \otimes 2) $ 4. $ \quad (1 \otimes 1) + (1 \otimes 1) = (2 \otimes 1) $ $$ \bar{1} \quad := \quad (1 \otimes 1) \simeq (2 \otimes 2) $$ $$ \bar{2} \quad := \quad (1 \otimes 2) \simeq (2 \otimes 1) $$ Thus, Tensor also has Ring's Structure $$ \begin{array}{c|ccc} + & \bar{0} & \bar{1} & \bar{2} \\ \hline \bar{0} & \bar{0} & \bar{1} & \bar{2} \\ \bar{1} & \bar{1} & \bar{2} & \bar{0} \\ \bar{2} & \bar{2} & \bar{0} & \bar{1} \end{array} \quad \begin{array}{c|ccc} * & \bar{0} & \bar{1} & \bar{2} \\ \hline \bar{0} & \bar{0} & \bar{0} & \bar{0} \\ \bar{1} & \bar{0} & \bar{1} & \bar{2} \\ \bar{2} & \bar{0} & \bar{2} & \bar{1} \end{array} $$