MathJax basic tutorial and quick reference

meta.math.stackexchange.com | October 14

This page doesn't appear to be an article and therefore may not display well in the Article View. You may want to switch to the Full Web Page view.

If you know there should be an article here, help improve the article parser by reporting this page. Thanks!

  1. To see how any formula was written in any question or answer, including this one, right-click on the expression it and choose "Show Math As > TeX Commands". (When you do this, the '$' will not display. Make sure you add these. See the next point.)

  2. For inline formulas, enclose the formula in $...$. For displayed formulas, use $$...$$. These render differently: $\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$ (inline) or $$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}\tag{displayed}$$

  3. For Greek letters, use \alpha, \beta, …, \omega: $\alpha, \beta, … \omega$. For uppercase, use \Gamma, \Delta, …, \Omega: $\Gamma, \Delta, …, \Omega$.

  4. For superscripts and subscripts, use ^ and _. For example, x_i^2: $x_i^2$.

  5. Groups. Superscripts, subscripts, and other operations apply only to the next “group”. A “group” is either a single symbol, or any formula surrounded by curly braces {}. If you do 10^10, you will get a surprise: $10^10$. But 10^{10} gives what you probably wanted: $10^{10}$. Use curly braces to delimit a formula to which a superscript or subscript applies: x^5^6 is an error; {x^y}^z is ${x^y}^z$, and x^{y^z} is $x^{y^z}$. Observe the difference between x_i^2 $x_i^2$ and x_{i^2} $x_{i^2}$.

  6. Parentheses Ordinary symbols ()[] make parentheses and brackets $(2+3)[4+4]$. Use \{ and \} for curly braces $\{\}$.

    These do not scale with the formula in between, so if you write (\frac{\sqrt x}{y^3}) the parentheses will be too small: $(\frac{\sqrt x}{y^3})$. Using \left(\right) will make the sizes adjust automatically to the formula they enclose: \left(\frac{\sqrt x}{y^3}\right) is $\left(\frac{\sqrt x}{y^3}\right)$.

    \left and\right apply to all the following sorts of parentheses: ( and ) $(x)$, [ and ] $[x]$, \{ and \} $\lbrace x \rbrace$, | $|x|$, \langle and \rangle $\langle x \rangle$, \lceil and \rceil $\lceil x \rceil$, and \lfloor and \rfloor $\lfloor x \rfloor$. There are also invisible parentheses, denoted by .: \left.\frac12\right\rbrace is $\left.\frac12\right\rbrace$.

  7. Sums and integrals \sum and \int; the subscript is the lower limit and the superscript is the upper limit, so for example \sum_1^n $\sum_1^n$. Don't forget {} if the limits are more than a single symbol. For example, \sum_{i=0}^\infty i^2 is $\sum_{i=0}^\infty i^2$. Similarly, \prod $\prod$, \int $\int$, \bigcup $\bigcup$, \bigcap $\bigcap$, \iint $\iint$.

  8. Fractions There are two ways to make these. \frac ab applies to the next two groups, and produces $\frac ab$; for more complicated numerators and denominators use {}: \frac{a+1}{b+1} is $\frac{a+1}{b+1}$. If the numerator and denominator are complicated, you may prefer \over, which splits up the group that it is in: {a+1\over b+1} is ${a+1\over b+1}$.

  9. Fonts

    • Use \mathbb or \Bbb for "blackboard bold": $\mathbb{CHNQRZ}$.
    • Use \mathbf for boldface: $\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ $\mathbf{abcdefghijklmnopqrstuvwxyz}$.
    • Use \mathtt for "typewriter" font: $\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ $\mathtt{abcdefghijklmnopqrstuvwxyz}$.
    • Use \mathrm for roman font: $\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ $\mathrm{abcdefghijklmnopqrstuvwxyz}$.
    • Use \mathsf for sans-serif font: $\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$ $\mathsf{abcdefghijklmnopqrstuvwxyz}$.
    • Use \mathcal for "calligraphic" letters: $\mathcal{ ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
    • Use \mathscr for script letters: $\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
    • Use \mathfrak for "Fraktur" (old German style) letters: $\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \mathfrak{abcdefghijklmnopqrstuvwxyz}$.
  10. Radical signs Use sqrt, which adjusts to the size of its argument: \sqrt{x^3} $\sqrt{x^3}$; \sqrt[3]{\frac xy} $\sqrt[3]{\frac xy}$. For complicated expressions, consider using {...}^{1/2} instead.

  11. Some special functions such as "lim", "sin", "max", "ln", and so on are normally set in roman font instead of italic font. Use \lim, \sin, etc. to make these: \sin x $\sin x$, not sin x $sin x$. Use subscripts to attach a notation to \lim: \lim_{x\to 0} $$\lim_{x\to 0}$$

  12. There are a very large number of special symbols and notations, too many to list here; see this shorter listing, or this exhaustive listing. Some of the most common include:

    • \lt \gt \le \ge \neq $\lt\, \gt\, \le\, \ge\, \neq$. You can use \not to put a slash through almost anything: \not\lt $\not\lt$ but it often looks bad.
    • \times \div \pm \mp $\times\, \div\, \pm\, \mp$. \cdot is a centered dot: $x\cdot y$
    • \cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing $\cup\, \cap\, \setminus\, \subset\, \subseteq \,\subsetneq \,\supset\, \in\, \notin\, \emptyset\, \varnothing$
    • {n+1 \choose 2k} or \binom{n+1}{2k} ${n+1 \choose 2k}$
    • \to \rightarrow \leftarrow \Rightarrow \Leftarrow \mapsto $\to\, \rightarrow\, \leftarrow\, \Rightarrow\, \Leftarrow\, \mapsto$
    • \land \lor \lnot \forall \exists \top \bot \vdash \vDash $\land\, \lor\, \lnot\, \forall\, \exists\, \top\, \bot\, \vdash\, \vDash$
    • \star \ast \oplus \circ \bullet $\star\, \ast\, \oplus\, \circ\, \bullet$
    • \approx \sim \simeq \cong \equiv \prec $\approx\, \sim \, \simeq\, \cong\, \equiv\, \prec$.
    • \infty \aleph_0 $\infty\, \aleph_0$ \nabla \partial $\nabla\, \partial$ \Im \Re $\Im\, \Re$
    • For modular equivalence, use \pmod like this: a\equiv b\pmod n $a\equiv b\pmod n$.
    • \ldots is the dots in $a_1, a_2, \ldots ,a_n$ \cdots is the dots in $a_1+a_2+\cdots+a_n$
    • Some Greek letters have variant forms: \epsilon \varepsilon $\epsilon\, \varepsilon$, \phi \varphi $\phi\, \varphi$, and others. Script lowercase l is \ell $\ell$.

    Detexify lets you draw a symbol on a web page and then lists the $\TeX$ symbols that seem to resemble it. These are not guaranteed to work in MathJax but are a good place to start. To check that a command is supported, note that MathJax.org maintains a list of currently supported $\LaTeX$ commands, and one can also check Dr. Carol JVF Burns's page of $\TeX$ Commands Available in MathJax.

  13. Spaces MathJax usually decides for itself how to space formulas, using a complex set of rules. Putting extra literal spaces into formulas will not change the amount of space MathJax puts in: a␣b and a␣␣␣␣b are both $a b$. To add more space, use \, for a thin space $a\,b$; \; for a wider space $a\;b$. \quad and \qquad are large spaces: $a\quad b$, $a\qquad b$.

    To set plain text, use \text{…}: $\{x\in s\mid x\text{ is extra large}\}$. You can nest $…$ inside of \text{…}.

  14. Accents and diacritical marks Use \hat for a single symbol $\hat x$, \widehat for a larger formula $\widehat{xy}$. If you make it too wide, it will look silly. Similarly, there are \bar $\bar x$ and \overline $\overline{xyz}$, and \vec $\vec x$ and \overrightarrow $\overrightarrow{xy}$ and \overleftrightarrow $\overleftrightarrow{xy}$. For dots, as in $\frac d{dx}x\dot x = \dot x^2 + x\ddot x$, use \dot and \ddot.

  15. Special characters used for MathJax interpreting can be escaped using the \ character: \$ $\$$, \{ $\{$, \_ $\_$, etc. If you want \ itself, you should use \backslash $\backslash$, because \\ is for a new line.

(Tutorial ends here.)


It is important that this note be reasonably short and not suffer from too much bloat. To include more topics, please create short addenda and post them as answers instead of inserting them into this post.

Matrices

  1. Use $$\begin{matrix}…\end{matrix}$$ In between the \begin and \end, put the matrix elements. End each matrix row with \\, and separate matrix elements with &. For example,

    produces:

    $$ \begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix} $$

    MathJax will adjust the sizes of the rows and columns so that everything fits.

  2. To add brackets, either use \left…\right as in section 6 of the tutorial, or replace matrix with pmatrix $\begin{pmatrix}1&2\\3&4\\ \end{pmatrix}$, bmatrix $\begin{bmatrix}1&2\\3&4\\ \end{bmatrix}$, Bmatrix $\begin{Bmatrix}1&2\\3&4\\ \end{Bmatrix}$, vmatrix $\begin{vmatrix}1&2\\3&4\\ \end{vmatrix}$, Vmatrix $\begin{Vmatrix}1&2\\3&4\\ \end{Vmatrix}$.

  3. Use \cdots $\cdots$ \ddots $\ddots$ vdots $\vdots$ when you want to omit some of the entries:

    $$\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots& \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{pmatrix}$$

  4. For "augmented" matrices, put parentheses or brackets around a suitably-formatted table; see arrays below for details. Here is an example:

    $$ \left[\begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array}\right] $$

    is produced by:

    $$ \left[
        \begin{array}{cc|c}
          1&2&3\\
          4&5&6
        \end{array}
    \right] $$
    
    

    The cc|c is the crucial part here; it says that there are three centered columns with a vertical bar between the second and third.

  5. For small inline matrices use \bigl(\begin{smallmatrix} ... \end{smallmatrix}\bigr), e.g. $\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$ is produced by:

     $\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$
    
    

Aligned equations

Often people want a series of equations where the equals signs are aligned. To get this, use \begin{align}…\end{align}. Each line should end with \\, and should contain an ampersand at the point to align at, typically immediately before the equals sign.

For example,

\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \\ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}} \\ & = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align}

is produced by

The usual $$ marks that delimit the display may be omitted here.

Definitions by cases

Use \begin{cases}…\end{cases}. End each case with a \\, and use & before parts that should be aligned.

For example, you get this:

$$f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases}$$

by writing this:

  f(n) =
\begin{cases}
n/2,  & \text{if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}

The brace can be moved to the right: $$ \left. \begin{array}{l} \text{if $n$ is even:}&n/2\\ \text{if $n$ is odd:}&3n+1 \end{array} \right\} =f(n) $$ by writing this:

To get a larger vertical space between cases we can use \\[2ex] instead of \\. For example, you get this:

$$f(n) = \begin{cases} \frac{n}{2}, & \text{if $n$ is even} \\[2ex] 3n+1, & \text{if $n$ is odd} \end{cases}$$

by writing this:

(An ‘ex’ is a length equal to the height of the letter x; 2ex here means the space should be two exes high.)

Symbols

In general, you have to search in long tables about a specific symbol you're looking for, things like $\Psi$, $\delta$, $\zeta$, $\ge$, $\subseteq$ ... And it turns out that this operation can be frustrating and time consuming, which can cause the buddy to abandon writing the complete $\LaTeX$ sentence in his answer, or in some cases, the complete answer itself.

That's why the tool that I will present you in this post was conceived. Basically, it is a $\LaTeX$ handwritten symbol recognition. Example in image:

Here is the website: Detexify² No more frustration.

Arrays

It is often easier to read tables formatted in MathJax rather than plain text or a fixed width font. Arrays and tables are created with the array environment. Just after \begin{array} the format of each column should be listed, use c for a center aligned column, r for right aligned, l for left aligned and a | for a vertical line. Just as with matrices, cells are separated with & and rows are broken using \\. A horizontal line spanning the array can be placed before the current line with \hline.

For example, $$\begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array} $$

Arrays can be nested to make an array of tables.

For example, $$ % outer vertical array of arrays \begin{array}{c} % inner horizontal array of arrays \begin{array}{cc} % inner array of minimum values \begin{array}{c|cccc} \text{min} & 0 & 1 & 2 & 3\\ \hline 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 1 & 1 & 1\\ 2 & 0 & 1 & 2 & 2\\ 3 & 0 & 1 & 2 & 3 \end{array} & % inner array of maximum values \begin{array}{c|cccc} \text{max}&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 1 & 2 & 3\\ 2 & 2 & 2 & 2 & 3\\ 3 & 3 & 3 & 3 & 3 \end{array} \end{array} \\ % inner array of delta values \begin{array}{c|cccc} \Delta&0&1&2&3\\ \hline 0 & 0 & 1 & 2 & 3\\ 1 & 1 & 0 & 1 & 2\\ 2 & 2 & 1 & 0 & 1\\ 3 & 3 & 2 & 1 & 0 \end{array} \end{array} $$

As the source for the preceding array is long, please right-click on one of the tables and choose $\mathsf{Show\ Math\ As\ }\blacktriangleright\mathsf{\ TeX\ Commands}$.

Fussy spacing issues

These are issues that won't affect the correctness of formulas, but might make them look significantly better or worse. Beginners should feel free to ignore this advice; someone else will correct it for them, or more likely nobody will care.

Don't use \frac in exponents or limits of integrals; it looks bad and can be confusing, which is why it is rarely done in professional mathematical typesetting. Write the fraction horizontally, with a slash:

$$\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& e^{i\pi/2} \\ \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\ \end{array}$$

The | symbol has the wrong spacing when it is used as a divider, for example in set comprehensions. Use \mid instead:

$$\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ \{x|x^2\in\Bbb Z\} & \{x\mid x^2\in\Bbb Z\} \\ \end{array}$$

For double and triple integrals, don't use \int\int or \int\int\int. Instead use the special forms \iint and \iiint: $$\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ \int\int_S f(x)\,dy\,dx & \iint_S f(x)\,dy\,dx \\ \int\int\int_V f(x)\,dz\,dy\,dx & \iiint_V f(x)\,dz\,dy\,dx \end{array}$$

Use \, to insert a thin space before differentials; without this $\TeX$ will mash them together:

$$\begin{array}{cc} \mathrm{Bad} & \mathrm{Better} \\ \hline \\ \iiint_V f(x)dz dy dx & \iiint_V f(x)\,dz\,dy\,dx \end{array}$$

Continued fractions

To make a continued fraction, use \cfrac, which works just like \frac but typesets the results differently:

$$ x = a_0 + \cfrac{1^2}{a_1 + \cfrac{2^2}{a_2 + \cfrac{3^2}{a_3 + \cfrac{4^4}{a_4 + \cdots}}}}$$

Don't use regular \frac or \over, or it will look awful:

$$ x = a_0 + \frac{1^2}{a_1 + \frac{2^2}{a_2 + \frac{3^2}{a_3 + \frac{4^4}{a_4 + \cdots}}}}$$

You can of course use \frac for the compact notation:

$$ x = a_0 + \frac{1^2}{a_1+} \frac{2^2}{a_2+} \frac{3^2}{a_3 +} \frac{4^4}{a_4 +} \cdots$$

Continued fractions are too big to put inline. Display them with $$$$ or use a notation like $[a_0; a_1, a_2, a_3, \ldots]$.

System of equations

  • Use \begin{array}…\end{array} and \left\{…\right.. For example, you get this:

$$ \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. $$

by writing this:

  • Alternatively we can use \begin{cases}…\end{cases}. The same system

$$ \begin{cases} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{cases} $$

is produced by the following code

$$\begin{cases}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{cases}
$$

  • To align the = signs use \begin{aligned}...\end{aligned} and \left\{…\right. (see asmeurer's comment) $$\left\{\begin{aligned} a_1x+b_1y+c_1z&=d_1+e_1 \\ a_2x+b_2y&=d_2 \\ a_3x+b_3y+c_3z&=d_3 \end{aligned} \right. $$

whose code is

  • To align the = signs and the terms as in $$\left\{\begin{array}{ll}a_1x+b_1y+c_1z &=d_1+e_1 \\ a_2x+b_2y &=d_2 \\ a_3x+b_3y+c_3z &=d_3 \end{array} \right.$$

use array with l (for "align left"; there are also c and r) parameters

  • Vertical space between equations. As explained in Definition by cases to get a larger vertical space between equations we can use \\[2ex] instead of \\. The system

$$\begin{cases} a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\[2ex] a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\[2ex] a_3x+b_3y+c_3z=\frac{p_3}{q_3} \end{cases} $$

is generated by the following code

$$\begin{cases} a_1x+b_1y+c_1z=d_1 \\[2ex] a_2x+b_2y+c_2z=d_2 \\[2ex] a_3x+b_3y+c_3z=d_3 \end{cases} $$

in comparison with

$$\begin{cases} a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\ a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\ a_3x+b_3y+c_3z=\frac{p_3}{q_3} \end{cases} $$

whose code is

$$\begin{cases} a_1x+b_1y+c_1z=\frac{p_1}{q_1} \\ a_2x+b_2y+c_2z=\frac{p_2}{q_2} \\ a_3x+b_3y+c_3z=\frac{p_3}{q_3} \end{cases} $$

  • In response to elect's comment. The following code

    $$ \left\{ \begin{array}{l} 0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex] 0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right. $$

produces

$$ \left\{ \begin{array}{l} 0 = c_x-a_{x0}-d_{x0}\dfrac{(c_x-a_{x0})\cdot d_{x0}}{\|d_{x0}\|^2} + c_x-a_{x1}-d_{x1}\dfrac{(c_x-a_{x1})\cdot d_{x1}}{\|d_{x1}\|^2} \\[2ex] 0 = c_y-a_{y0}-d_{y0}\dfrac{(c_y-a_{y0})\cdot d_{y0}}{\|d_{y0}\|^2} + c_y-a_{y1}-d_{y1}\dfrac{(c_y-a_{y1})\cdot d_{y1}}{\|d_{y1}\|^2} \end{array} \right. $$

Colors

Named colors are browser-dependent; if a browser doesn't know a particular color name, it may render the text as black. The following colors are standard in HTML4 and CSS2 and should be interpreted the same by most browsers: $$\begin{array}{|rc|} \hline \verb+\color{black}{text}+ & \color{black}{text} \\ \verb+\color{gray}{text}+ & \color{gray}{text} \\ \verb+\color{silver}{text}+ & \color{silver}{text} \\ \verb+\color{white}{text}+ & \color{white}{text} \\ \hline \verb+\color{maroon}{text}+ & \color{maroon}{text} \\ \verb+\color{red}{text}+ & \color{red}{text} \\ \verb+\color{yellow}{text}+ & \color{yellow}{text} \\ \verb+\color{lime}{text}+ & \color{lime}{text} \\ \verb+\color{olive}{text}+ & \color{olive}{text} \\ \verb+\color{green}{text}+ & \color{green}{text} \\ \verb+\color{teal}{text}+ & \color{teal}{text} \\ \verb+\color{aqua}{text}+ & \color{aqua}{text} \\ \verb+\color{blue}{text}+ & \color{blue}{text} \\ \verb+\color{navy}{text}+ & \color{navy}{text} \\ \verb+\color{purple}{text}+ & \color{purple}{text} \\ \verb+\color{fuchsia}{text}+ & \color{magenta}{text} \\ \hline \end{array}$$

HTML5 and CSS 3 define an additional 124 color names that will be supported on many browsers.

Math Stack Exchange's default style uses a light-colored page background, so avoid using light colors for text. Stick to darker colors like maroon, green, blue, and purple, and remember also that 7–10% of men are color-blind and have difficulty distinguishing red and green.

The color may also have the form #rgb where $r, g, b$ are in the range or 09, af and represent the intensity of red, green, and blue on a scale of $0–15$, with a=10, b=11, … f=15. For example:

$$\begin{array}{|rrrrrrrr|}\hline \verb+#000+ & \color{#000}{text} & & & \verb+#00F+ & \color{#00F}{text} & & \\ & & \verb+#0F0+ & \color{#0F0}{text} & & & \verb+#0FF+ & \color{#0FF}{text}\\ \verb+#F00+ & \color{#F00}{text} & & & \verb+#F0F+ & \color{#F0F}{text} & & \\ & & \verb+#FF0+ & \color{#FF0}{text} & & & \verb+#FFF+ & \color{#FFF}{text}\\ \hline \end{array} $$

$$\begin{array}{|rrrrrrrr|} \hline \verb+#000+ & \color{#000}{text} & \verb+#005+ & \color{#005}{text} & \verb+#00A+ & \color{#00A}{text} & \verb+#00F+ & \color{#00F}{text} \\ \verb+#500+ & \color{#500}{text} & \verb+#505+ & \color{#505}{text} & \verb+#50A+ & \color{#50A}{text} & \verb+#50F+ & \color{#50F}{text} \\ \verb+#A00+ & \color{#A00}{text} & \verb+#A05+ & \color{#A05}{text} & \verb+#A0A+ & \color{#A0A}{text} & \verb+#A0F+ & \color{#A0F}{text} \\ \verb+#F00+ & \color{#F00}{text} & \verb+#F05+ & \color{#F05}{text} & \verb+#F0A+ & \color{#F0A}{text} & \verb+#F0F+ & \color{#F0F}{text} \\ \hline \verb+#080+ & \color{#080}{text} & \verb+#085+ & \color{#085}{text} & \verb+#08A+ & \color{#08A}{text} & \verb+#08F+ & \color{#08F}{text} \\ \verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} & \verb+#58F+ & \color{#58F}{text} \\ \verb+#A80+ & \color{#A80}{text} & \verb+#A85+ & \color{#A85}{text} & \verb+#A8A+ & \color{#A8A}{text} & \verb+#A8F+ & \color{#A8F}{text} \\ \verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} & \verb+#F8F+ & \color{#F8F}{text} \\ \hline \verb+#0F0+ & \color{#0F0}{text} & \verb+#0F5+ & \color{#0F5}{text} & \verb+#0FA+ & \color{#0FA}{text} & \verb+#0FF+ & \color{#0FF}{text} \\ \verb+#5F0+ & \color{#5F0}{text} & \verb+#5F5+ & \color{#5F5}{text} & \verb+#5FA+ & \color{#5FA}{text} & \verb+#5FF+ & \color{#5FF}{text} \\ \verb+#AF0+ & \color{#AF0}{text} & \verb+#AF5+ & \color{#AF5}{text} & \verb+#AFA+ & \color{#AFA}{text} & \verb+#AFF+ & \color{#AFF}{text} \\ \verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} & \verb+#FFF+ & \color{#FFF}{text} \\ \hline \end{array}$$

You can have a look here for quick reference on colors in HTML.

Crossing things out

Use \require{cancel} in the first formula in your post that requires cancelling; you need it only once per page. Then use:

$$\require{cancel}\begin{array}{rl} \verb|y+\cancel{x}| & y+\cancel{x}\\ \verb|\cancel{y+x}| & \cancel{y+x}\\ \verb|y+\bcancel{x}| & y+\bcancel{x}\\ \verb|y+\xcancel{x}| & y+\xcancel{x}\\ \verb|y+\cancelto{0}{x}| & y+\cancelto{0}{x}\\ \verb+\frac{1\cancel9}{\cancel95} = \frac15+& \frac{1\cancel9}{\cancel95} = \frac15 \\ \end{array} $$

Use \require{enclose} for the following:

$$\require{enclose}\begin{array}{rl} \verb|\enclose{horizontalstrike}{x+y}| & \enclose{horizontalstrike}{x+y}\\ \verb|\enclose{verticalstrike}{\frac xy}| & \enclose{verticalstrike}{\frac xy}\\ \verb|\enclose{updiagonalstrike}{x+y}| & \enclose{updiagonalstrike}{x+y}\\ \verb|\enclose{downdiagonalstrike}{x+y}| & \enclose{downdiagonalstrike}{x+y}\\ \verb|\enclose{horizontalstrike,updiagonalstrike}{x+y}| & \enclose{horizontalstrike,updiagonalstrike}{x+y}\\ \end{array} $$

\enclose can also produce enclosing boxes, circles, and other notations; see MathML menclose documentation for a complete list.

\implies ($\implies$) is a marginally preferable alternative to \Rightarrow ($\Rightarrow $) for implication.

There's also \iff: $ \iff $

\to ($\to$) is preferable to \rightarrow or \longrightarrow for things like $f\colon A \to B$.

Using \newcommand

I would like to remark that it is possible to define LaTeX commands as you do in your TeX files. I felt so happy when I first discovered it! It's enough to insert something like

$ \newcommand{\SES}[3]{ 0 \to #1 \to #2 \to #3 \to 0 } $

$ \newcommand{\SES}[3]{ 0 \to #1 \to #2 \to #3 \to 0 }$ at the top of your post (remember the dollars!). Then you can just use your commands as you are used to do: in my example typing $$ \SES{A}{B}{C} $$ will produce the following:

$$ \SES{A}{B}{C} $$

It's also possible to use plain \def:

\def\ses#1#2#3{0 \to #1 \to #2 \to #3 \to 0}

and then $\ses{A}{B}{C}$ will produce the same output.

Tags & References

For longer calculations (or referring to other post's results) it is convenient to use the tagging/labelling/referencing system. To tag an equation use \tag{yourtag}, and if you want to refer to that tag later on, add \label{somelabel} right after the \tag. It is not necessary that yourtag and somelabel are the same, but it usually is more convenient to do so:

$$ a := x^2-y^3 \tag{*}\label{*} $$

$$ a := x^2-y^3 \tag{*}\label{*} $$

In order to refer to an equation, just use \eqref{somelabel}

$$ a+y^3 \stackrel{\eqref{*}}= x^2 $$

$$ a+y^3 \stackrel{\eqref{*}}= x^2 $$

or \ref{somelabel}

Equations are usually referred to as $\eqref{*}$, but you can also use $\ref{*}$.

Equations are usually referred to as $\eqref{*}$, but you can also use $\ref{*}$.

As you can see, references are even turned into hyperlinks, which you can use externally as well, e.g. like this. Note that you can also reference labels in other posts as long as they appear on the same site, which is especially useful when referring to a question with multiple equations, or when commenting on a post.


Due to a bug blocks containing a \label will break in preview, as a workaround you can put $\def\label#1{}$ in your post while editing and remove that on submission - unfortunately this means you won't spot misspelled references before submitting... Just don't forget to remove that \def again

Big braces

Use \left and \right to make braces - (round), [square] and {curly} - scale up to be the size of their arguments. Thus

renders as $$ f\left(\left[ \frac{1+\left\{x,y\right\}}{\left(\frac{x}{y}+\frac{y}{x}\right)\left(u+1\right)}+a\right]^{3/2}\right). $$

Note that curly braces need to be escaped as \{ \}.

If you start a big brace with \left and then need to match that to a \right brace that's on a different line, use the forms \right. and \left. to make "shadow" braces. Thus,

renders as $$ \begin{aligned} a=&\left(1+2+3+ \cdots \right. \\ & \cdots+ \left. \infty-2+\infty-1+\infty\right). \end{aligned} $$

There is also a \middle construct which is useful when one has a mid-expression brace which must also scale up:

$$
\left\langle
  q
\middle\|
  \frac{\frac{x}{y}}{\frac{u}{v}}
\middle|
   p
\right\rangle
$$

renders as $$ \left\langle q\middle\|\frac{\frac{x}{y}}{\frac{u}{v}} \middle| p \right\rangle. $$

Note that constructs like \left\langle, \left| and \left\| are also possible.

Commutative diagrams

AMScd diagrams must start with a "require":

$\require{AMScd}$
\begin{CD}
    A @>a>> B\\
    @V b V V\# @VV c V\\
    C @>>d> D
    \end{CD}

to get this diagram: $\require{AMScd}$ \begin{CD} A @>a>> B\\ @V b V V\# @VV c V\\ C @>>d> D \end{CD}

@>>> is used for arrow right

@<<< is used for arrow left

@VVV is used for arrow down

@AAA is used for arrow up

@= is used for horizontal double line

@| is used for vertical double line

@. is used for no arrow

Another example:

\begin{CD} A @>>> B @>{\text{very long label}}>> C \\ @. @AAA @| \\ D @= E @<<< F \end{CD}

Long labels increase the length of the arrow and in this version also automatically increase corresponding arrows.

Limits

To make a limit (like $\lim \limits_{x \to 1} \frac{x^2-1}{x-1}$), use this syntax:

First, start off with $\lim. This renders as $\lim$. The backslash is there to prevent things like $lim$, where the letters are slanted.

Second, add \limits_{x \to 1} inside. The code now looks like $\lim \limits_{x \to 1}$, and renders as $\lim \limits_{x \to 1}$. The \to inside makes the right arrow, rendered as $\to$. The _ makes the $x \to 1$ go underneath the $\lim$. Finally, the pair of curly braces { } makes sure that $x \to 1$ is treated as a whole object, and not two separate things.

Lastly, add the function you want to apply the limit to. To make the limit mentioned above, $\lim \limits_{x \to 1} \frac{x^2-1}{x-1}$, simply use $\lim\limits_{x \to 1} \frac{x^2-1}{x-1}$.

And that is how you make a limit using MathJax.

Arbitrary operators

If an operator is not available as a built-in command, use \operatorname{…}. So for things like $$\operatorname{arsinh}(x)$$ write \operatorname{arsinh}(x) since \arsinh(x) will give an error and arsinh(x) has wrong font and spacing: $arsinh(x)$.

This was already mentioned in a comment by Charles Staats. You might consider this an addition to the FAQ section on \lim, \sin and so on.

For operators which need limits above and below the operator, use \operatorname*{…}, as in $$ \operatorname*{Res}_{z=1}\left(\frac1{z^2-z}\right)=1 $$

Absolute values and norms

The absolute value of some expression can be denoted as \lvert x\rvert or, more generally, as \left\lvert … \right\rvert. It renders as $\lvert x\rvert$.

The norm of a vector (or similar) can be denoted as \lVert v\rVert or, more generally, as \left\lVert … \right\rVert. It renders as $\lVert v\rVert$. (You may also write \left\|…\right\| instead.)

In both cases, the rendering is better than what you'd get from |x| or ||v||, which render with bars that don't descend low enough and sub-optimal spacing. At least on some browsers, so here is a screenshot how it looks for me, using Firefox 31 on OS X:

And here is the same formula rendered by your browser:

$$|x|, ||v|| \quad\longrightarrow\quad \lvert x\rvert, \lVert v\rVert$$

It was typeset as

$$|x|, ||v|| \quad\longrightarrow\quad \lvert x\rvert, \lVert v\rVert$$

Left and Right Implication Arrows

Another way to display the arrows for right and left implication instead of using

$\Rightarrow$, $\Leftarrow$ and $\Leftrightarrow$

which produces $\Rightarrow$, $\Leftarrow$ and $\Leftrightarrow$ respectively, you can use

$\implies$ for $\implies$, $\impliedby$ for $\impliedby$ and $\iff$ for $\iff$

The latter of which produces longer arrows which may be more desirable to some.

The degree symbol for angles is not ^\circ. Although many people use this notation, the result looks quite different from the canonical degree symbol shipped with the font:

90° renders as $90°$ while 90^\circ renders as $90^\circ$.

If your keyboard doesn't have a ° key, feel free to copy from this post here, or follow these suggestions.

Note that comments below indicate that on some configurations at least, ° renders inferior to ^\circ. And I recently had a post of mine edited just for the sake of turning ° into ^\circ, indicating that someone felt rather strongly about this. So the suggestion above does seem somewhat controversial at the moment. I maintain that from a semantic point of view, ° is superior to ^\circ, and if the rendering suffers from this, then it's a bug in MathJax. After all, LaTeX offers a proper degree symbol in the tex companion fonts, indicating that someone there, too, decided that ^\circ is not perfect. But if things are broken now, I can't fault people from pragmatically sticking with the rendering they prefer. Personally I prefer semantics, also for the sake of screen readers.

Long division

$$ \require{enclose} \begin{array}{r} 13 \\[-3pt] 4 \enclose{longdiv}{52} \\[-3pt] \underline{4}\phantom{2} \\[-3pt] 12 \\[-3pt] \underline{12} \end{array} $$

One important trick shown here is the use of \phantom{2} to make a blank space that is the same size and shape as the digit 2 just above it.

This is adapted from http://stackoverflow.com/a/22871404/3466415 (which uses slightly different but not less valid formatting).

You must log in to answer this question.

protected by MJD May 28 at 17:18

Thank you for your interest in this question. Because it has attracted low-quality answers, posting an answer now requires 10 reputation on this site.

Would you like to answer one of these unanswered questions instead?