GhaSShee


Linear Algebra


# V is Linear Space over K V is Linear Space over $ \mathbb{K} $ $ \Leftrightarrow $ `(def)` V is Module on $ \mathbb{K} $ $ \Leftrightarrow $ `(def)` - V is an additive group (+) - V is given as; - $ \mathbb{K} \times V \rightarrow V $ - $ (k,v) \mapsto kv $ where 1. $ \quad 1v = v $ 2. $ \quad (a+b)v = av+bv $ 3. $ \quad a(bv) = (ab)v $ 4. $ \quad a(v + v') = av + av' $ $ \Leftrightarrow $ Frankly, - "add" and "scholor times" is defined in the space - 「和」と「スカラー倍」が定義されている空間



# Subspace W of "V over K" Subspace $ W $ of $ V / \mathbb{k} $ $ \Leftrightarrow $ `(def)` $$ \begin{cases} \forall a, \forall b \in W.\quad a+b \in W \\ \forall k \in \mathbb{R}. \quad \quad ka \in W \end{cases} $$ ************************************** * * * ^ * * | / {y = 2x} * * | / * * | / * * | / * * | / * * |/ * * -----------+--------------> * * /| * * / | * * / | * * / | * * / | * * * * * * * ************************************** # Quotient Space by Subspace W of V define isomorphism on $ V $ as; $ v, v' \in V $ $ v \simeq v' \iff $ `(def)` $ \quad v - v' \in W $ ********************************************************** * * * ^ * * | * * | * * - - - - - + - - - - - - * * ^ | ^ * * v' \ | / v * * \|/ * * -----------+-----------> * * | * * | * * -----------+------------ W = {y = c} * * | * * | * * * * * * * **********************************************************
Quotient Space $ V / W := V / \sim := \{ [v] \mid v \in V \} $ where $$ \begin{cases} [v] + [v'] = [v + v'] \\ k [v] = [kv] \end{cases} $$ prove well difined ! # Linear Map $ V $ , $ W $ : vector space over $ \mathbb{K} $ ## Linear Map $ f : V \rightarrow W $ is Linear Map $ \iff $ `(def)` 1. $ \quad \forall v , \forall v' \in V . \quad f(v + v') = f(v) + f(v') $ 2. $ \quad \forall k \in \mathbb{K}, \forall v \in V . \quad f(kv) = k f(v) $ ## Kernel kernel of $ \ f \quad $ ( $ f $ : $ V \rightarrow W $ : linear map) - $ Ker \ f := \{ v \in V \mid f(v) = 0 \} $ $ \quad \quad = f^{-1}(\{0\}) $ ## Image image of $ \ f \quad $ ( $ f $ : $ V \rightarrow W $ : linear map) - $ Im f := \{ w \in W \mid w \in f(v) \} $ $ \quad \quad = f(V) $ ## Isomorphism Theorem $ f : V \rightarrow W $ : linear map $ \bar{f} : V / Ker f \quad \simeq \quad Im f $ $ \quad\quad [v] \quad \mapsto \quad f(v) $ - isomorphism : linear and bijective - 同型 : 線形写像かつ全単射 e.g. ************************************************* * y y * * ^/ / / / ^ / * * /\/ / / | / * * / /\/ / / f | / * * / /\/ / / ---> |/ * * +-+-+++-+>x ----o--->x * * / / /\/ / /| * * / / / /\/ / | * * / / / /\ / | * ************************************************* $$ f(\nwarrow) = 0 $$ $$ \bar{f} : \underbrace{\mathbb{R}^2 / Ker f }_{(\nwarrow)} = \underbrace{Im\ f}_{\text{( / )}} $$ # basis 基底
$ V : \text{ linear space over } \mathbb{K} $
## $ v _ 1 , ... , v _ n \in V $ is linear independent $ \Leftrightarrow $ `(def)` $$ a _ 1 v _ 1 + ... + a _ n v _ n = 0 \Rightarrow a _ 1 = ... = a _ n = 0 $$
## Subspace spanned by $ v _ 1 , ... , v _ n \in V $ $ \Leftrightarrow $ `(def)` $$ Span \{ v _ 1 , ... , v _ n \} := \{ a _ 1 v _ 1 + ... + a _ n v _ n \mid a _ i \in \mathbb{K} \} $$ or we write $ < v _ 1 , ... , v _ n > $
## $ v _ 1 , ... , v _ n \in V $ is basis of $ V $ $ \Leftrightarrow $ `(def)` 1. $ v _ 1 , ... , v _ n \in V $ is linear independent 2. $ V = Span \{ v _ 1 , ... , v _ n \} $
# dimension Def . if basis of $ V $ has n elements $ e _ 1 , ... , e _ n $, $$ dim V := n $$ # prove that dimension is well-defined suppose 2 basises of $ V $ - $ e _ 1 , ... , e _ n $ - $ d _ 1 , ... , d _ m $ then $ e _ i $ can be described as $$ e _ i = \sum^{n} _ {j=1} a _ {ij} d _ j $$ this is $$ (e _ 1 , ... , e _ n ) = ( d _ 1 , ... , d _ m) \left( \begin{array}{ccc} a _ {11} & \cdots & a _ {1n} \\ \vdots & & \vdots \\ a _ {m1} & \cdots & a _ {nm} \end{array} \right) $$ similarly $$ (d _ 1 , ... , d _ m ) = ( e _ 1 , ... , e _ n) \left( \begin{array}{ccc} b _ {11} & \cdots & b _ {1m} \\ \vdots & & \vdots \\ b _ {n1} & \cdots & b _ {mn} \end{array} \right) $$ so we name these matricses $ A $ and $ B $, $$ AB = E _ n \quad\wedge\quad BA = E _ m $$ $$ \therefore A \text{ is bijective } $$
$ A : \mathbb{R}^m \rightarrow \mathbb{R}^n $ suppose $ m \gt n $ $ A $ is injective (単射) $ \iff $ $ ( A v = 0 \Rightarrow v = 0 ) $ $$ A v = 0 $$ $ \hspace{7cm}\text{------------------------} \Downarrow $ operate with [Elementary matrix](../2016-03-02-elementary-matrix.md) $$ P A v = 0 $$ $$ \text{------------------------} \Downarrow $$ $$ \left( \begin{array}{ccc | c} 1 & & & \\ & \ddots & & 0 \\ & & 1 & \end{array} \right) \left( \begin{array}{c} v _ 1 \\ \vdots \\ v _ m \end{array} \right) = 0 $$ but , non 0 solution found $$ \left( \begin{array}{c} v _ 1 \\ \vdots \\ \vdots \\ v _ m \end{array} \right) = \left( \begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \end{array} \right) $$ this is contradiction $$ \therefore m \le n $$ similary, $$ n \le m $$

$ \quad \hspace{6cm} \therefore m = n \hspace{4cm} $ $ \Box \quad \text{well-defined} $