GhaSShee


$ \mathbb{C} $


Referring [@taketo1024](http://www.twitter.com/taketo1024)'s blog

# Trigonometric function ## Definition Euler's Formula $$ \begin{eqnarray} e^{-ix} &=& \cos{(-x)} + i \sin{(-x)} \\ &=& \cos{x} - i \sin{x} \end{eqnarray} $$ leads to $$ \begin{cases} e^{ix} + e^{-ix} = 2\cos{x} \\\ e^{ix} - e^{-ix} = 2i \sin{x} \end{cases} \Leftrightarrow \begin{cases} \cos{x} = \frac{1}{2}(e^{ix} + e^{-ix}) \\\ \sin{x} = \frac{1}{2i}(e^{ix} - e^{-ix}) \end{cases} \tag{3} $$ then just extend x $ \mapsto $ z .
This is the definition of $ \sin(z) $ , $ \cos(z) $ $$ \begin{eqnarray} \begin{cases} \cos{z} : &=& \frac{1}{2}(e^{iz} + e^{-iz}) \\\ \sin{z} : &=& \frac{1}{2i}(e^{iz} - e^{-iz}) \end{cases} \end{eqnarray} $$ ## visualization $ w = \cos{z} $ ![](/image/complex-trigonometric/complex-trigonometric-01.png width="600") $ w = \sin{z} $ ![](/image/complex-trigonometric/complex-trigonometric-02.png width="600") ## Euler's Formula in Complex Number
$$ \cos{z} + i \sin{z} = e^{iz} $$ $$ e^{iz} = e^{-y}(\cos x + i \sin x) $$ ![](/image/complex-trigonometric/complex-trigonometric-03.gif width="300") when $z = t + ci$ where $c$ is constant, e.g. $\cos z$ is red, $\sin z$ is blue and $e^{iz}$ is green. if $c = 0$, then like this ![](/image/complex-trigonometric/complex-trigonometric-04.gif width="300")

## 加法定理 the same with Real Number