GhaSShee


Computer Mathematician


『コンピュータは数学者になれるのか?』  照井一成 # 数学者をつくろう ## Basics ### symbols numeric symbols - $ = $ (eqauls) - $ 0 $ (zero) - $ S $ (successor) - $ + $ (plus) - $ \cdot $ (multiplier) logical symbols - $ \land $ (logical and) - $ \lor $ (logical or) - $ \to $ (so) - $ \bot $ (inconsequence) - $ \forall $ (forall) - $ \exists $ (exists) ### term - $ x,y,z, ... $ : numeric term - $ A,B,C, ... $ : propositional term ### derivatively defined symbols - $ \lnot A $ := $ \lnot A \iff A \to \bot $ - $ x \neq y $ := $ (x = y) \to \bot $ - $ A \leftrightarrow B $ := $ (A \to B) \land (B \to A) $ - $ x \le y $ := $ \exists s . (s + x = y) $ ### derivatively defined propositions - $ \forall x \le y . A(x) $ := $ \forall x . (x \le y \to A(x)) $ - $ \exists x \le y . A(x) $ := $ \exists x . (x \le y \land A(x)) $ - $ div(x,y) $ := $ \exists z \le y . ( x \cdot z = y ) $ - $ even(x) $ := $ div(2,x) $ - $ prime(x) $ := $ 2 \le x \land \forall z \le x. (div(z,x) \to (z = 1 \lor z = x)) $ ### variables $$ \forall x . \exists y . x = S(y) + z $$ - bounded variables : $ x $ , $ y $ - free variable(s) : $ z $ ### models $$ \mathbb{N} \models A $$ - we read this " $ A $ is True " - $ \mathbb{N} $ is called "標準モデル" ### Bounded Logical Expression BLE : Bounded Logical Expression (有界論理式) ; expression composed of - $ \land $ - $ \lor $ - $ \to $ - $ \forall x \le t . $ - $ \exists x \le t . $ BLS : Bounded Statemente (有界文); BLE which contains NO free variable #### NOTE ( BLS is true or not ) is computationally proved
## 論理式 ### $ \sum _ 1 $ 論理式 , $ \prod _ 1 $ 論理式 $ \sum _ 1 $ logical expr - $ \exists x . \exists y .\ ...\ . A $ $ \prod _ 1 $ logical expr - $ \forall x . \forall y .\ ...\ . A $ ### more e.g. - $ \exists x . \forall y . \forall z . \exists w . A $ this is $ \sum _ 3 $ logical expr
- $ \forall x . \forall y . \exists z . \exists w . \forall v . \exists u . A $ this is $ \prod _ 4 $ logical expr
## prop 1.1 $ \exists P . $ $$ \mathbb{N} \models A \quad \Rightarrow \quad P(A) = yes $$ $$ \mathbb{N} \not\models A \quad \Rightarrow \quad P(A) = no $$ - $ P $ is a program judge the truth of a proposition - $ A $ is bounded statement ## prop 1.2 $ \exists Q . $ $$ \mathbb{N} \models A \quad \iff \quad Q(A) = yes $$ - $ Q $ is a program which outputs `yes` iff A is True. - $ A $ is BS ## De Morgan's law $$ \mathbb{N} \models \forall x . A(X) \leftrightarrow \exists x . \lnot A(x) $$ $$ \mathbb{N} \models \exists x . A(X) \leftrightarrow \forall x . \lnot A(x) $$ ## 推論規則 # 一階算術 ## prop 1.3 def mathematician $ \mathbf{Q} $ $ A \in \sum _ 1 \Rightarrow $ $$ \mathbb{N} \models A \iff \mathbf{Q} \vdash A $$ - $ \mathbf{Q} $ は 小学生並みの数学者 # prop