GhaSShee


$p$-adic


2進絶対値は、《2で何回割ることができるか》を表す数を $ n $ として $$ \frac{1}{2 ^ n} $$ で定義される # p-adic numbers
## Basic ### distance function d : 2 elements $ ( x, y ) \rightarrow \mathbb{R} $ 1. $ d(x,y) = 0 $ iff $ x = y $ 2. $ d(x,y) = d(x,y) $ 3. $ d(x,y) \le d(x,z) + d(z,y) $ $ \forall z \in X $ A set $ X $ together with metric d is called a $ metric\ space $ . $$ ( X , d ) $$ ### norm 1. $ || x || = 0 $ iff $ x = 0 $ 2. $ || x * y || = || x || * || y || $ 3. $ || x + y || \le || x || + || y || $ $$ d(x,y) = || x - y || $$

## Metrics ### Def. $ Order $ $$ {ord} _ p a \quad := \quad {greatest}\ m\quad |\quad a \equiv 0 \quad ( \mod p^m \ ) $$
### e.g. $$ {ord} _ 5 250 = 3 , \quad {ord} _ 5 50 = 2 , \quad {ord} _ 5 36 = 0 $$ $$ \quad {ord} _ 2 24 = 3 , \quad {ord} _ 2 27 = 0 $$

### Def. $ p-adic\ norm $ $$ |x| _ p = \begin{cases} \frac{1}{p^{ {ord} _ p x}} \quad if x \neq 0; \\ 0 \quad \quad if x = 0. \end{cases} $$
### e.g. $$ |p| = p\ , \quad |p| _ p = \frac{1}{p} $$

### Def. $ non-Archimedean $
A norm is called $ \quad non-archimedean $
$$ ============================== (def) $$ $$ \forall x. \forall y. \quad || x + y || \le \max ( || x || , || y || ) $$

### Thm. $ Ostrowski $ $ \quad $ all norms on $ \mathbb{Q} $ are only two elements. $ \quad $ $ |x| $ and $ |x| _ p $

### redefine p-adic norm $ \quad $ $ \rho := \frac{1}{p} $ $ \quad $ $ | x | _ p = \rho ^ {ord _ p x} $

### $ trivial\ norm $ $$ \begin{cases} || 0 || = 0 \\ || x || = 1 \quad if x \neq 0 \end{cases} $$ ### Thm. $ Ostrowski $ Every $ nontrivial $ norm $ || \ || $ on $ \mathbb{Q} $ $ \cong $ $ | \ \ | _ p $ for some prime p or p = $ \infty $ here, $$ | \ \ | _ \infty \equiv | \ \ | $$



### Distance on Non-Archimedian #### Triangle ********************************************************************** * z * * + * * / \ * * / \ * * / \ * * / \ * * / \ * * +-----------+ * * x y * * * ********************************************************************** $ d(x,y) \le max(d(x,z),d(z,y)) $ let $ d(x,z) \gt d(z,y) $ so, $ \quad $ $ d(x,y) \le d(x,z) $ $ d(x,z) \le d(x,y) + d(y,z) \le max(d(x,y),d(y,z)) $
( $ \because $ Non-archimedian ) since $ d(x,z) \gt d(y,z) $ , so, $ \quad $ $ d(x,z) \le d(x,y) $ that is $$ d(x,z) = d(x,y) $$ $$ ============================ $$
every triangle is an isosceles triangles




#### Circle **************************************************************** * * * .-. * * | | * * '-' * * D(a,r-) * * * * * **************************************************************** $ D(a,r ^ - ) := \{ x \in \mathbb{Q} \ | \ | x - a | _ p \le r \} $ $$ \forall b \in D(a,r ^ - ) . \quad D(a,r ^ - ) = D(b,r ^ - ) $$ $$ ========================== $$
all the inner point of D is the center of D




## Review of building up the complex numbers p 進数 をコーシー列で完備化 ## The field of $ p $ - adic numbers # p-adic interpolation of the Riemann zeta-function # Building up $ \Omega $ # p-adic power series # Rationality of the zeta-function of a set of equations over a finite field